Warmer, and sometimes drier, conditions associated with global climate change are driving many species to shift poleward and/or upslope. I hypothesized that microclimatic changes related to deforestation cause similar shifts for forest species persisting within degraded landscapes. This appears to be the first study to examine this novel hypothesis. I examined elevational distributions of dung beetle communities along parallel intact and disturbed elevational gradients from 290 to 3450 m asl in the Andes of southeastern Peru. Deforested sites were consistently warmer and drier than forested sites. To maintain the same ambient temperature as in forest, species in a deforested landscape would need to shift on average 489±59 m upslope. Dung beetle species showed a mean upslope range shift of 132±64 m (maximum=743 m) in the deforested landscape. Eight species occurred farther upslope in the degraded landscape, while none shifted downslope. In addition to upper range limit expansions, six species shifting upslope also showed range contractions or population declines at their lower range boundary. High elevation and disturbance-tolerant species did not show range shifts. These findings suggest that land-use change may both confound and compound the influence of global climate change on biodiversity. Synergies between habitat degradation and climate change could more than double previous range shift projections for this century, leading to unexpectedly rapid changes in biodiversity, especially for sensitive organisms such as tropical insects. On the other hand, range shifts caused by habitat degradation may be mistakenly attributed to global climate change.
DOI
10.1111/j.1744-7429.2011.00768.x
Publication Year
2012
Publication Site
Biotropica
Journal Volume
44
Page Numbers
82–89
General topic
Ecology
Biodiversity/Biogeography
Specific topic
habitat disturbance
community structure
climate change
Abstract Note