Male horn dimorphism in the scarab beetle, <i>Onthophagus taurus</i>: Do alternative reproductive tactics favour alternative phenotypes

DOI
10.1006/anbe.1999.1342
Publication Year
2000
Publication Site
Animal Behavior
Journal Volume
59
Page Numbers
459–466
Family
Scarabaeidae
Species 1 Binomial
General topic
Morphology
Evolution
Specific topic
horns
Author

Moczek, Armin P.; Emlen, Douglas J

Abstract Note

In a variety of organisms morphological variation is discrete rather than continuous. Discrete variation within a sex has attracted particular interest as it is thought to reflect the existence of alternative adaptations to a heterogeneous selection environment. The beetle Onthophagus taurus shows a dimor- phism for male horns: males that exceed a critical body size develop a pair of long, curved horns on their heads, while smaller males remain hornless. In this study we report on the alternative reproductive tactics used by males with these two morphologies, and present experimental and behavioural data suggesting that these alternative tactics selectively favour discretely different male phenotypes. Horned males aggressively defended tunnel entrances containing breeding females. Fights involved the use of horns, and males with longer horns were more likely to win fights. In contrast, hornless males employed nonaggressive sneaking behaviours when faced with competitively superior males. Sneaking behaviours appeared to require high degrees of manoeuvrability inside tunnels to access and mate with females despite the presence of a guarding male. Comparisons of running performances of males with identical body sizes but different horn lengths suggest that the possession of horns reduces male agility inside tunnels. Thus, horn possession confers a clear advantage to males using fighting behaviours to access females, whereas hornlessness may be favoured in males that rely primarily on sneaking behaviours. Combined, the two alternative reproductive tactics used by male O. taurus appear to favour opposite horn phenotypes, which may explain the paucity of intermediate morphologies in natural populations of O. taurus.