Dung feeding in Hydrophilid, Geotrupid and Scarabaeid beetles: Examples of parallel evolution

Publication Year
2004
Publication Site
European Journal of Entomology
Journal Volume
101
Page Numbers
365–372
Family
Geotrupidae
General topic
Evolution
Behaviour
Author

Holter, Peter

Abstract Note

The maximum size of ingested ball-shaped particles was determined in three species of adult dung feeding beetle: Anoplotrupes (Geotrupes) stercorosus and Geotrupes spiniger (Geotrupidae, Geotrupinae) and Sphaeridium lunatum (Hydrophilidae, Sphaeridiinae). Maximum diameters were 40-65 µm, 60-75 µm and 16-19 µm in A. stercorosus, G. spiniger and S. lunatum, respectively, and it was concluded that these beetles feed in the same way as found in previous studies on coprophagous scarabaeids (Scarabaeinae and Aphodiinae). Coarse particles, mainly indigestible plant fragments, are rejected by an unknown filtering mecha- nism, and only very small particles are actually ingested. The two geotrupids, however, tolerate somewhat larger particles than do scarabaeines of similar size. This may reflect a lower degree of specialisation towards dung feeding in the geotrupids than in the scarabaeines. In several ways, the mouthparts of the coprophagous Scarabaeidae, Geotrupidae and Hydrophilidae show essentially the same morphological modifications that must be adaptations for dung feeding. For the hydrophilid (Sphaeridium), such modifications are described for the first time. They include asymmetric mandibular molars (right convex, left concave), fitting exactly into each other, with highly specialised surfaces that may concentrate the food prior to ingestion by squeezing fluid out of it. Other examples are the conjunctives (scarabaeids and geotrupids) or similar structures (the hydrophilid) and the large, hairy, pad-like distal lobes of the maxillar galeae. Provided that current views on the evolutionary history of these beetles are correct, dung feeding has arisen independently in the Scarabaeidae, Geotrupidae and Hydrophilidae. If so, the feeding on very small particles and the concomitant modifications of mouthparts in these three groups must be results of parallel evolution.