To understand the dynamics of spatially structured populations, we need to know the level of movements at different spatial scales. This paper reports on Aphodius dung beetle movements at two scales: movements between dung pats within pastures, and movements between pastures. First, I test an assumption common to many recent models of spatially structured populations - that the probability of an individual moving between habitat patches decreases exponentially with distance. For dung beetles, I find sufficient evidence to reject this assumption. The distribution of dispersal distances was clearly leptokurtic, with more individuals moving short and long distances than expected on the basis of an exponential function. In contrast, the data were well described by a power function. I conclude that dung beetle movements include an element of non-randomness not captured by the simplistic exponential model. The power function offers a promising alternative, but the actual mechanisms behind the pattern need to be clarified. Second, I compare several species of Aphodius to each other. Although these species occur in the same network of habitat patches, their movement patterns are different enough to result in a mixture of different spatial population structures. Movements between pastures were more frequent the larger the species, the more specific its occurrence in relation to pat age, and the more specialized it is on cow dung and open pasture habitats. Within pastures, all species from "patchy" populations, with much movement among individual pats.
DOI
10.2307/3547553
Publication Year
2000
Publication Site
Oikos
Journal Volume
91
Page Numbers
323–335
Family
Scarabaeidae
General topic
Ecology
Biodiversity/Biogeography
Specific topic
community structure
population dynamics
Abstract Note